Three-Dimensional Bio-Printed Autologous Omentum Patch Ameliorates Unilateral Ureteral Obstruction Induced Renal Fibrosis


Abstract
Recent advances in the field of tissue engineering and regenerative medicine have contributed to the repair of damaged tissues and organs. Renal dysfunctions such as chronic kidney disease (CKD) are considered intractable owing to its cellular heterogeneity. In addition, the absence of definitive treatment options other than dialysis or kidney transplantation in advanced CKD. In this study, we investigated therapeutic effects of a three-dimensional (3D) bio-printed omentum patch as treatment source. Because omentum contains a lot of biological sources for immune regulation and tissue regeneration, it has been used in clinic for >100 years. By using autologous tissue as a bio-ink, the patch could minimize the immune response. The mechanically micronized omentum without any additives became small enough to print, but the original components could be preserved. Then, the 3D printed omentum patch was transplanted under renal subcapsular layer in unilateral ureteral obstruction (UUO) rat model. After 14 days of patch transplantation, the kidneys were analyzed through bulk RNA sequencing and histopathological staining. From the results, decreased tubular injury was observed in the omentum patch group. In addition, the omentum patch significantly altered biological process of gene ontology such as fibrosis-related gene and growth factors. RNA sequencing confirmed the antifibrotic effect by inhibiting fibrosis-inducing mechanisms within PI3K-AKT and JAK-STAT pathways. In conclusion, the omentum patch showed the effect of antitubular injury and antifibrosis on UUO kidneys. In particular, the omentum patch is expected to protect the organ from further degeneration and loss of function by inhibiting the progression of fibrosis. The omentum patch can be a novel therapeutic option for renal dysfunction.

Scroll to Top